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Abstract-Axial skeletons are promising intermediate repre­
sentations of shape which are used in machine vision and 
higher level theories of vision to provide a concise and intuitive 
description of the shape. More recently, physiological correlates 
of axial skeletons have been reported. We show that a stable 
approximation of the medial axis can be generated based on an 
existing neurally plausible model of perceptual organization. 

I. INTRODUCTION 

The shape skeleton is a sparse representation for shape. The 

notion was first introduced [1] as the Medial Axis Transform 

(MAT). The MAT is the set of the centers of all circles that 

meet the following two conditions: 

1) Of all co-centric cirles that intersect the shape boundary, 

it is the smallest. 

2) The circle intersects the boundary at 2 or more points. 

Note that if (1) is met, and the point of intersection on the 

shape boundary has a defined curvature then the circle will be 

tangent to the shape boundary. In ref. [1] a "grassfire" algo­

rithm was used to calculate the MAT. Wave fronts propagate 

from the shape boundary, and points of collision, or "shocks" 

are part of the medial axis. The analogy here is that if the 

fires were started in a grass field in the shape of the object 

boundary, then the medial axis would be the points where the 

fires meet. 

The MAT is likely too unstable and too sensitive to noise 

for representation of shape in a biological nervous system. 

Any indentation in a shape boundary, however small, will 

lead to an additional "rib" extending out from the medial 

axis to the tip of the indentation. A practically more desirable 

representation is the maximum a posteriori (MAP) skeleton 

proposed by ref. [2]. In this Bayesian formulation, branches 

are added to the skeleton only if the improved description of 

the shape outweighs the additional complexity. This leads to a 

more stable skeletonization than the MAT which more closely 

matches the intuitive notion of a shape skeleton. 

The shape skeleton has been used extensively for object 

recognition, because it is invariant to several transformations 

of within-class objects [3]. It also plays a role in several 

theories of higher level vision [4], [5]. Psychophysical cor­

relates of medial axis computation include increased contrast 

sensitivity along medial points in figures [6]. There is evidence 

that already cells in primary visual cortex, area VI, show in­

creased sensitivity along medial points [7], [8]. Corresponding 

modulation of the mean firing rate of the neurons was observed 

approximately lOOms after stimulus onset. 

It is therefore of interest to study how the shape skeleton 

can be computed and represented in the brain. A recent model 

[9] relies on the assumption of perfectly synchronized onset 

of border ownership selectivity (see ref. [10] and below for 

a definition of border ownership and its neural representation 

in visual cortex). This assumption is problematic because the 

visual system can perform figural binding even in cases when 

temporal asynchrony in the stimulus is large [11]. This same 

study also found that small changes in spatial presentation 

are more likely to cause disruptions in figural binding. We 

therefore set out to develop a neurally plausible model of 

shape skeleton generation that does not require high-precision 

temporal correlations. 

The representation of perceptual objects in the visual system 

of primates has long been a subject of intense study. An 

important insight was obtained by neurophysiological record­

ings that showed that figure-ground assignment is at least 

partially encoded by "border-ownership selective" neurons in 

early (striate and extrastriate) visual cortex [10]. The study 

demonstrated that many neurons in these areas (indeed a 

majority in area V2) have a preferred side of figure, responding 

with a higher mean firing rate when the foreground object 

(figure) is on one side of its receptive field than on the other. 

The modulation starts about 70ms after figure onset (1O-25ms 

after initial neuronals responses in these cortical areas). This 

short latency is incompatible with a modulation by (slow, 

unmyelinated) intra-areal connections. Instead, the authors 

argued that contextual input is provided by fast, white-matter 

connections from "grouping cells" (G cells) which bias border 

ownership cells and thus generate their context-dependent 

responses. A computational model based on this mechanism 

[12] could qualitatively explain the neurophysiological results. 

More recently, Mihalas et al [13] showed that this cell layer 

can also be used to sharpen a broad attentional spotlight to the 

lower-level and higher resolution features of a specific object. 

In the present study, we show that the same mechanisms also 

generate shape skeletons. 

II. METHODS 

An overview of the network structure of our model is shown 

in Figure 1. The input to the model is a grayscale image. 
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Neurons are organized in two-dimenstional arrays which in­

teract through the application of convolution masks. Sets of 

arrays with similar convolution masks can be considered as 

layers of one type of cell. The first layer consists of edge 

cells which respond to oriented edges in their receptive fields 

(independent of context), with each array being characterized 

by its orientation. An edge cell receives input from a filter that 

consists of the difference between two, offset, two-dimensional 

Gaussian functions, a shape similar to a Gabor filter. There 

are 16 orientations of edge cells in our model, with each 

of the arrays receiving input via the same mask rotated at 

different angles. Generation of border ownership selectivity 

by feedback from grouping cell input has been characterized 

in previous work [12], [13] and is not the focus of the present 

study. Therefore, for simplicity, we assign border-ownership 

explicitly, making input to the grouping cells strictly feed­

forward and thus increasing its computational performance. 

This is done by using figures that are always darker than the 

background, and using edge cells that respond to one contrast 

only, instead of pooling several different contrasts for each 

orientation. 

The next layer consists of grouping cells, with each array 

characterized by its radius, R. Each grouping cell receives 

excitatory input from all 16 orientations of edge cells. If the 

masks are summed over all orientations, the result resembles 

a circle with radius R (see also ref. [12]). This circle is 

composed of 16 "arcs" modeled as Gaussian functions, akin 

to observed response functions in posterior inferotemporal 

cortex [14]. Each arc is the mask used to calculate the input 

from one orientation-selective edge cell. More precisely, the 

mask used to calculate the input from an edge cell array with 

orientation e to a grouping cell array with radius R is an 

elongated Gaussian with a major axis (larger length constant 

in the denominator of the exponential) orthogonal to e, and its 

mean offset from the center of the mask by a vector of length 

R and orientation e + 7f /2. The input from each orientation 

saturates at a low value, and separately from other orientations. 

A Hill equation with N = 1 is used. Neurally, this nonlineariy 

is easily implemented when inputs from similar orientations 

make synapses on the same dendrite. After this first layer 

of nonlinearities, another nonlinearity in the form of a Hill 

equation with N = 3 is applied. This 2-layer processing 

scheme results in the grouping cells responding only if they 

receive input from 2 different orientation channels. 

Grouping cells also receive inhibitory input from this same 

orientation via a mask that is on the opposite side of the circle. 

More specifically, input is from a Gaussian orthogonal to e 
which is offset from the center of the mask by a vector of 

length R and orientation e + 7f. Another way to picture this 

inhibition is that it is the same as the excitation, but coming 

from edge cells of the opposite polarity, since rotating the edge 

cell mask by 7f is equivalent to changing its sign. 

Grouping cells of different radii interact via inhibition of 

two kinds: cocentric and cotangential inhibition. Cocentric 

inhibition is exerted by grouping cells with small receptive 

field (referred to as "small" grouping cells in the following) on 

those with larger receptive fields ("large" grouping cells). The 

mask used is a two dimensional Gaussian. Smaller grouping 

cells thus inhibit larger grouping cells that have the same 

center. Cotangential inhibition acts only from large to small 

grouping cells. The mask used for inhibition from radius 

Rl to R2 is the value of a normal distribution with mean 

Rl - R2 evaluated at each point's distance from the center 

of the mask. Maximal inhibition is therefore received by 

grouping cells which share a tangent with a larger grouping 

cell. The nonlinearities in the grouping cells and the co­

tangential connection pattern help ensure that the grouping cell 

is active only if it intersects the boundary at 2 or more points, 

and the co-centric inhibition ensures that it is the smallest of 

all circles to do so. 

III. RESULTS 

Using the original figures from the study by Feldman and 

Singh [2], we tested the ability of the algorithm to generate the 

medial axis. Medial axes very similar to the algorithm used 

by [2] were recovered, for examples see Figure 2. There was 

slight activity along minor ribs that the Feldman and Singh 
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Fig. 2. Model Results. Example figures (from ref. [2]) are shown left. On 
the right is the corresponding activity of G cell populations in our model, 
summed over all scales. Activity along the figure contours is that G cells at 
the smallest scales. 

algorithm avoided completely which was in most cases sub­

stantially lower than that on the main medial axis. For greater 

stability and invariance with respect to minor modifications 

of the figure borders, it is important that not every single 

point of the medial axis be recovered, and the "fuzziness" 

inherent to the Gaussian connection patterns ensures that small 

changes in the border do not create very large changes in 

the medial axis. The model has the most difficulty detecting 

the medial axis at points where the circle corresponding to 

that point of the medial axis is tangent to a point of high 

curvature. At these points, edge activity is strong mostly 

for orientations different from the orientation that would be 

tangent to the circle corresponding to the point on the medial 

axis in question. Since the grouping cells are activated by 

edges tangent to the circle, it is difficult for these corners 

to properly activate the grouping cells. An example can be 

seen in the elephant silhouette (4th picture from the top in 

Figure 2) where the grouping cell activity is weak in the center 

of the body. The reason is the location and scale of these 

grouping cells requires input from horizontally oriented edge 

cells from both top and bottom (and, ideally, from vertically 

oriented edge cells from left and right) but strong input is 

only available from the top. At the bottom, the orientation of 

the legs is mainly vertical and therefore only very few edge 

cells with horizontally oriented filters are activated in this area . 

However, corners will always generate slight activity at the 

orientation tangent to the circle, so it is still possible to detect 

the medial axis in these cases. 

a 

b 

Fig. 3. Dynamics of G cell activity. (a) Initial, (b), Final summed G cell 
response to top picture in Fig 2. 

The dynamics of the model are summarized in the example 



shown in Figure 3. The initial response in Figure 3a, is broad, 

non-specific and "blob-like." Qualitatively speaking, this type 

of response may be useful for calculating saliency and assign­

ing border ownership. There is still a preference for the shape 

skeleton due to the non-linearities in the model, which prefer 

G cells tangent to two points on the figure boundary. Through 

time, the co-tangential and co-centric inhibition sharpen the 

G cell response to the shape skeleton seen in Figure 3b, a 

response useful for object recognition. 

IV. CONCLUSION 

We show that mechanisms of perceptual organization and 

top-down attention [12], [13] naturally generate activity pat­

terns that correspond to a shape skeleton. In addition, we find 

that the initial dynamics of the model are more akin to a proto­

object representation that could be used to calculate saliency. 

As time goes on, inhibitory connections sharpen the shape 

skeleton. The dynamics also suggest that G cells will show a 

more proto-object like representation when lateral inhibition 

is weaker, and a more shape-skeleton like representation when 

lateral inhibition is stronger. We suggest that these mechanisms 

are useful for object recognition in the primate visual system. 
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