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We provide analytical solutions for mean firing rates and cross-
correlations of coincidence detector neurons in recurrent networks with
excitatory or inhibitory connectivity, with rate-modulated steady-state
spiking inputs. We use discrete-time finite-state Markov chains to rep-
resent network state transition probabilities, which are subsequently
used to derive exact analytical solutions for mean firing rates and cross-
correlations. As illustrated in several examples, the method can be used
for modeling cortical microcircuits and clarifying single-neuron and
population coding mechanisms. We also demonstrate that increasing
firing rates do not necessarily translate into increasing cross-correlations,
though our results do support the contention that firing rates and
cross-correlations are likely to be coupled. Our analytical solutions un-
derscore the complexity of the relationship between firing rates and
cross-correlations.

1 Introduction

Neuronal codes have been the focus of considerable past work at both the
experimental and theoretical levels, which has underscored the importance
of firing rate and cross-correlation, though their exact roles in information
processing and representation remain to be elucidated fully (Abeles, 1991;
Alonso, Usrey, & Reid, 1996; Merzenich et al., 1996; Stevens & Zador, 1998;
Steinmetz et al., 2000; Eagleman and Sejnowski, 2000; Niebur, 2002; Tomita
and Eggermont, 2005). Given the importance of rate and cross-correlation in
neural coding, the determination of how they differentially affect neuronal
responses assumes significance if the impact of these different neural codes
is to be fully appreciated.

Much of the theoretical basis for understanding information processing
and neural coding in complex biological systems is based on computational
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modeling—numerical solutions of the underlying model equations. While
this approach has proven extremely useful and is the only practical one
in many cases, analytical solutions nearly always would be preferable if
they were available. Analytical solutions for neuronal coding would be
especially useful to determine the relative contributions of different types
of neuronal codes in network activity. It is the derivation and exploration
of these types of solutions that forms the motivation for our current work.

In this letter, we present analytical solutions for recurrent networks of
particularly simple model neurons, coincidence detectors, with arbitrary
connectivity and thresholds. By “arbitrary connectivity,” we mean that the
network can have an arbitrary number of loops, the case of networks with-
out loops having been solved by Mikula and Niebur (2005). However, we
require that the network be strongly connected (i.e., it cannot be subdi-
vided in subnetworks), as discussed below. Synapses can be of arbitrary
strengths, they can be excitatory and inhibitory, and they can be between
any two neurons, with or without loops. The input to the network is char-
acterized in terms of the average firing rate. We derive exact closed-form
solutions for all neurons (and pairs) in the network in the same form for
the steady state. The model is based on our previous analytical solutions
for the output firing rate of an individual coincidence detector receiving an
arbitrary number of excitatory and inhibitory inputs, in both the presence
and absence of synaptic depression (Mikula & Niebur, 2003a, 2003b, 2004),
and on our solutions for multilayer feedforward networks of coincidence
detectors (Mikula & Niebur, 2005).

After defining methods and notations in section 2, we present our main
result, the closed-form expressions for steady-state firing rates and cross-
correlations, in section 3. Several examples are studied in section 4 and
compared with numerical solutions in section 5. Limitations of the model
and implications regarding neural coding are discussed in section 6. The
notation used is summarized in Table 1.

2 Methods

2.1 Model Neurons: Coincidence Detectors. The model neurons uti-
lized in this study are coincidence detectors, also known as linear threshold
gates, McCulloch-Pitts neurons receiving weighted inputs, or Perceptron
units (McCulloch & Pitts, 1943; Rosenblatt, 1958; Rojas, 1996). A coinci-
dence detector is a computational unit that fires at time t if the weighted
sum of its inputs received within the window (t, t − δt) equals or exceeds the
threshold θ . This is a very simplified model of a neuron, but it is analytically
tractable, and there is considerable experimental evidence indicating that
at least under certain conditions, such as high background synaptic activ-
ity, neurons can function as coincidence detectors (Abeles, 1982; Wörgötter,
Niebur, & Koch, 1991; König, Engel, & Singer, 1996; Destexhe, Contreras,
& Steriade, 1998; Kempter, Gerstner, & van Hemmen, 1998; Destexhe &
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Table 1: Notation Used.

Dimension/Range/
Symbol Description Number/Value

�( , ) Generalized Krönecker δ {0, 1}n × {0, 1}n → {0, 1}
C Connectivity (or adjacency) matrix R

n × R
n

I Set of all input vectors Total: 2n

I (t) Input at time t {0, 1}n

Ii Input vector number i {0, 1}n

n Number of neurons N+
N Number of system states N := 2n

� Transition matrix [0, 1]N × [0, 1]N

P(Ii ) Probability of input vector i [0, 1]
π (t) State probabilities of system at time t [0, 1]N

π Steady-state probabilities of the system (t → ∞) [0, 1]N

πi Component i of π (i.e., steady-state probability
of state i) [0, 1]

pi Mean rate of input to neuron i [0, 1]
p(i) Firing rate of neuron i [0, 1]
ψ(t) State of system at time t {0, 1}n

ψi State vector number i {0, 1}n

� Matrix of all states {0, 1}N × {0, 1}n

θ Threshold vector R
n+

�( ) Component-wise Heaviside function R
n → {0, 1}n

Note: [0, 1] is the (closed) interval from 0 to 1, and {0, 1} denotes the binary pair of values
0 and 1.

Pare, 1999). Thus, even though our model neuron is very simple, it carries
biological significance and may be considered biologically realistic under
certain experimental conditions. We also point out that our formalism is
applicable to the larger class of sigma-pi type of model neurons (Mel, 1993).
A sigma-pi unit is a model neuron that sums contributions over clusters of
input synapses, and the resulting sums are then multiplied. Optionally, a
nonlinearity can be applied to the sum of products.

In many cases, it makes sense to think of δt as of a period on the order
of 5 to 10 ms. This is the timescale of fast ionic synaptic conductances,
and it is at this timescale that synaptic events superpose and interact. We
do not, however, make use of this specific setting in our analysis other
than requiring that it is sufficiently small that a maximum of one spike can
be generated in a period of this length. An example neuron is shown in
Figure 1, which also introduces some of the notation used.

2.2 Network Architecture. We define our network of n coincidence
detectors as a pair, (C, θ ), where C is a connectivity matrix (also known as
an adjacency matrix) whose (i, j)th entry, Ci j , is the numerical value of the
connection from the ith coincidence detector to the j th coincidence detector,
and where the threshold vector, θ , whose ith element, denoted θi , is the
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Figure 1: Model neuron used in this study, with three inputs in this case. The
coincidence detector (circle in the center), with index, i , produces an output
spike (left) when the sum over weighted binary inputs (right) in any given time
bin is equal to or above threshold, θ . The thresholding operation is symbolized
by the Heaviside function � (see equation 2.1). The convention of representing
the threshold, θ , in the lower half of the neuron, and the index, i , in the upper
half, will be used in all figures.

nonnegative threshold for the ith coincidence detector. For a network of n
neurons, the size of C is n2, and the values of the connectivity matrix are real
numbers—positive for excitatory connections and negative for inhibitory
connections. For reasons that will become apparent in section 3.2, we require
that our network be strongly connected in the graph-theoretic sense; that
is, it is necessary that all nodes be reachable from every other node by at
least one direct or indirect path. Whether a graph has this property can
be tested efficiently (Corman, Leiserson, Rivest, & Stein, 2001); it is a very
weak constraint and likely fulfilled for any biological neural network.

2.3 Input: Binomial Spike Trains with Specific Cross-Correlations.
The inputs to our network are represented by the set I of all possible in-
put combinations, I k, k = 1, . . . , 2n, and their corresponding probabilities,
P(I k). In previous reports (Mikula & Niebur, 2003a; Niebur, 2007), we in-
troduced a systematic method for the generation of an arbitrary number
of spike trains with specified firing rates (and also with specified pair-wise
mean cross-correlations; only uncorrelated spike trains are used as input in
the examples used in this letter). Action potentials are distributed accord-
ing to binomial counting statistics in each spike train. A physiologically
important special case is obtained if the rate of incoming spikes is low
and convergence is high; the binomial statistics that governs the spikes
generated by a coincidence detector can then be approximated by Poisson
statistics. We further note that throughout this letter, we often refer to the
probability that a bin contains a spike simply as an input or output fir-
ing rate, with the understanding that the actual firing rate is obtained by
dividing the probability by the length of the time bins, δt.
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2.4 Network Dynamical Equation. Synthesizing what we have stated
above, the equation for updating the recurrent network (C, θ ) is given by

ψ(t + 1) = �(ψ(t)C + I(t) − θ ), (2.1)

where ψ(t) is a binary row vector denoting the network state at time t and
I(t) is a binary row vector denoting the input at time t. The symbol �() rep-
resents the component-wise Heaviside function, that is, the Heaviside step
function (zero for negative arguments, unity for zero or positive arguments)
applied componentwise to the n-tuple, which is its argument.

3 Results

In this section, we derive the main results of this letter: the exact steady-state
solutions for mean firing rates and cross-correlations in a recurrent network
of coincidence detectors receiving rate- and cross-correlation modulated
binomial inputs. Toward this end, we recast our network model in terms of
a Markov chain.

3.1 Markov Chain Transition Matrix. Let � be an enumeration of all
2n network states such that each row contains a unique state; thus, row i of
the matrix � contains the state ψ i . To compute the Markov chain transition
matrix, �, we note that it is a matrix of size 2n × 2n, whose ith row tells
us how the ith network state, ψ i , probabilistically transforms into other
network states in the next time step of the discrete network dynamics. That
is, entry (i, j) in this matrix is the probability that state ψ i goes to state ψ j in
the next time step, �i j = P(ψ t

i → ψ t+1
j ). We use equation 2.1 to compute the

network states at time t + 1 for different probabilistically occurring inputs,
I k , and thus obtain

�i j = P
(
ψ t

i → ψ t+1
j

) =
∑

k

P(I k) × �(ψ j,�(ψi C + I k − θ)), (3.1)

where the sum is over all 2n input states and where �( , ) is a generalized
Kronecker-δ function that takes two network states as input and yields
unity if the states are identical and zero otherwise.

3.2 Steady-State Vector of the Markov Chain Transition Matrix. Let
π (t) be the row vector of size 2n whose ith component denotes the proba-
bility that the network is in state i at iteration t. Using the elements of � as
indices for the Markov chain transition matrix �, it follows from elementary
properties of Markov chains that

π(t) = π (0)�t. (3.2)
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The long-term probabilities of finding the network in each of its possible
states are found from

π� = π , (3.3)

subject to the normalization condition,

N∑
i=1

πi = 1, (3.4)

since each component of this vector is the probability of finding the network
in the corresponding system state.

In words, equations 3.3 to 3.4 say that π is the eigenvector of the transi-
tion matrix with eigenvalue 1 and of unit length. Because the graph describ-
ing the network states is, by assumption, strongly connected, the transition
matrix � is irreducible (Graham, 1987).

Since the elements of this matrix are transition probabilities, they are
nonnegative real numbers. According to the Perron-Frobenius theorem
(Graham, 1987), the largest eigenvalue of the matrix (the so-called Per-
ron root) is then positive and real. Its value is bounded from below and
above by the smallest and largest row sums (sums of all elements of one
row), and since � is a (right) stochastic matrix, all row sums are unity (each
term in a given row is the probability that a given state goes to one of the
system states, and the sum of these probabilities has to be unity). The value
of the Perron root must therefore be unity, satisfying the condition that the
eigenvalue of � is indeed 1.

So far, we have shown that equations 3.3 and 3.4 have a solution. In the
final step, we show that it is unique. Indeed, the Perron-Frobenius theorem
asserts that the Perron root is a simple eigenvalue, that is, it is a simple root of
the characteristic polynome of �, and the eigenspace corresponding to this
eigenvalue is therefore one-dimensional. The normalization condition that
the sum over all its elements is unity, equation 3.4, determines the remaining
degree of freedom and makes this normalized eigenspace therefore the
unique solution of equations 3.3 and 3.4. We note in passing that the Perron-
Frobenius theorem also guarantees that all elements of the eigenvector
corresponding to the Perron root are nonnegative, as is required for their
interpretation as probabilities of the system’s states.

In practice, an efficient way to compute the steady-state solution is as
follows. Let I be the 2n × 2n identity matrix (this matrix I should not
be confused with the set I of all possible inputs) and define Q = � − I .
Furthermore let e be the 2n-vector of all 1’s, and b be the (2n + 1)-vector
with a 1 in position 2n + 1 and 0 elsewhere. The ith element of the steady-
state vector of the Markov chain, π , is the steady-state probability for the
corresponding network state ψ i or, equivalently, the ith row of �. The vector
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π is obtained as solution of the following linear equation (Bolch, Greiner,
de Meer, & Trivedi, 1998),

( Q | e)TπT = b. (3.5)

Appending e to Qand a final 1 at the end of the zero vector on the right-hand
side ensures that normalization—that the solution vector π has components
summing to 1.

3.3 Firing Rates for the Network. To obtain p(i), the mean firing rate
of the ith neuron, we sum over the probabilities for all those network states
in which this neuron fires (i.e., is in state 1). Given that the components of
the vector π are the steady-state probabilities and that the ith column of
the network state matrix � enumerates the activity states (0 or 1) of the ith
neuron for all inputs, we obtain

p(i) =
∑

k

πk�ki , (3.6)

with the sum running over all 2n input states.

3.4 Cross-Correlations. The Pearson cross-correlation coefficient be-
tween neurons i and j is defined, as usual, as

q (i, j) = E(i, j) − E(i)E( j)√
E(i, i) − E(i)2

√
E( j, j) − E( j)2

, (3.7)

where E() is the expectation value, calculated again as usual—E(i, j) :=
E(ψkiψk j ) = ∑

k πkψkiψk j and E(i) := E(ψki ) = ∑
k πkψki = p(i) as in equa-

tion 3.6. Given that a neuron state takes only values 0 and 1, we have
E(ψ2

ki ) = E(ψki ) and

q (i, j) = �(ψ (i) + ψ ( j) − 2)πT − p(i)p( j)√
p(i) − p(i)2

√
p( j) − p( j)2

. (3.8)

4 Examples

4.1 Mutual Inhibition (n = 2). Let us consider the simple two-neuron
recurrent network shown in Figure 2a with thresholds set equal to +1.
Connection weights shown as edge labels are equal to −1 between the
neurons and 1 for the inputs; thus, simultaneous input to a neuron from the
other neuron and its external input will be subthreshold and produce no
output. Recalling from section 2.2 that the (k, l)th entry of the connectivity
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Figure 2: (a) A simple two-neuron recurrent network with mutual inhibition
receiving two excitatory binomial inputs. Both thresholds are equal to 1. (b)
State transition diagram for simple two-neuron recurrent network in a . Network
states are 2-tuples, read from left to right; for example, 10 denotes that neuron
1 produces an output of 1, whereas neuron 2 produces no output. (c, d) Firing
rates plotted as a function of input firing rate for this network.

matrix is defined as the weight of the connection to the kth neuron from the
lth neuron, we obtain a connectivity matrix given by the following:

C =
(

0 −1

−1 0

)
. (4.1)

There are two neurons and thus 22 input states. The resulting network
state matrix, �, is

� =




0 0

0 1

1 0

1 1


 . (4.2)
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The first row of � is the network state for having zero output spikes for
both neurons, the second row is the network state for having neuron 2 have
one output spike and neuron 1 has zero, and so on for all of the four rows
of �. Figure 2b illustrates the network state space.

We now proceed to construct the Markov chain transition matrix, �,
using the rows of � as corresponding indices. Using equation 3.1, we obtain
the following:

� =




(1 − p1)(1 − p2) (1 − p1)p2 p1(1 − p2) p1 p2

1 − p2 p2 0 0

1 − p1 0 p1 0

1 0 0 0


 , (4.3)

where p1 is the spiking probability of the input to neuron 1 and p2 is
the spiking probability of the input to neuron 2. See Figure 2b for the
corresponding state diagram.

From section 3.1, we obtain π , the steady-state vector of the Markov
chain transition matrix, �:

πT =




p1 p2 + 1 − p2 − p1

1 − 2 p1 p2 + p1
2p2

2(
p1

2 − 2 p1 + 1
)
p2

1 − 2 p1 p2 + p1
2p2

2(
p2

2 − 2 p2 + 1
)
p1

1 − 2 p1 p2 + p1
2p2

2

p1 p2 (p1 p2 + 1 − p2 − p1 )
1 − 2 p1 p2 + p1

2p2
2




, (4.4)

where the ith element of π is the steady-state probability for the corre-
sponding network state, the ith row of �.

The mean firing rate p(i) of the ith neuron in the network is given in
equation 3.6 as the sum over all those network states in � in which the
ith neuron has output unity, times the corresponding probabilities for the
network states, given by π . From that equation and equation 4.4, we obtain

p(1) =π3 + π4 = (1 − p2)p1

1 − p1 p2
(4.5)

p(2) =π2 + π4 = (1 − p1)p2

1 − p1 p2
, (4.6)

where, as a reminder, π i is the ith component of vector π .
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Plots of equations 4.5 and 4.6 as functions of the input rates, p1 and
p2, are shown in Figures 2c and 2d. One of the defining properties of the
firing rates is the behavior close to the point where both neurons receive
continuous input, p1 = p2 = 1. The expressions in equations 4.5 and 4.6
are not defined here, and they cannot be continued into this point because
different limits are reached along different trajectories in the p1, p2 plane.
This can be most clearly seen on the axes p1 = 1 and p2 = 1. In the former
case, neuron 1 fires continuously and neuron 2 never, and equations 4.5
and 4.6 yield p(1) = 1, p(2) = 0. The opposite occurs in the latter case and
p(1) = 0, p(2) = 1 is obtained. Other functional dependencies between p1

and p2 yield other limits (not shown). No steady state is defined for the
system in this limiting case.

The computation of the cross-correlation using equation 3.8 yields

q (1, 2) = π4 − p(1)p(2)√
p(1) − p(1)2

√
p(2) − p(2)2

= 0. (4.7)

Although one might intuitively expect negative correlation between the
two mutually inhibitory neurons, this intuition is not correct in the case
we consider here. Each neuron inhibits its partner in the next time step of
length δt since the input to each neuron is collected over this time period
and the decision of whether to fire is made at its end. Since the inputs to the
neurons are not correlated in time, the cross-correlation between the activity
of the neurons is identically zero, as computed explicitly in equation 4.7.
These results from the analytical solution are confirmed by simulation (see
section 5).

4.2 Feedback Inhibition (n = 3). Let us now consider the three-neuron
recurrent network receiving two uncorrelated and differentially weighted
inputs, shown in Figure 3a, with thresholds of neurons 2 and 3 set equal to
+1, and neuron 1 set equal to +3, and connection weights shown as edge
labels. Recalling from section 2.2 that the (k, l)th entry of the connectivity
matrix is defined as the weight of the connection to the kth neuron from the
lth neuron, we obtain a connectivity matrix given by

C =




0 1 0

0 0 1

2 −1 0


 . (4.8)
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Figure 3: (a) A simple three-neuron recurrent network receiving two differen-
tially weighted binomial input. Thresholds for neurons 2 and 3 are unity, and
for the threshold for neuron 1 is 3. Edge values are connection weights. (b) State
transition diagram for the network in a . Network states are 3-tuples, read from
left to right; for example, 100 denotes that neuron 1 produces an output of 1,
whereas neurons 2 and 3 produce no output (i.e., each has output 0). Edge values
are network state transition probabilities. Note that the outgoing probabilities
at individual nodes sum to unity. (c–h) Firing rates and cross-correlations plot-
ted as a function of input firing rate for the network shown in Figure 3a. (c–e)
Output firing rates of the network as a function of input rate, p. (c) p(1) versus
p, (d) p(2) versus p, (e) p(3) versus p. (f–h) Cross-correlations in the network
as a function of input rate, p. (f) q (1,2) versus p, (g) q (2,3) versus p, (h) q (3,1)
versus p. Exact solutions from equations 4.12 to 4.14 and 3.8 shown as solid
black lines, and simulation results as dotted lines.
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Now there are three neurons, thus 23 input states, and the resulting
network state matrix, �, is

� =




0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




. (4.9)

Thus, the first row of � is the network state with zero output spikes for
all three neurons, the second row is the network state for neuron 3 having
one output spike and neurons 1 and 2 have zero, and so on for all the eight
rows of �. Figure 3b illustrates the network state space.

We now proceed to construct the Markov chain transition matrix, �,
using equation 3.1. That is, we determine how network states at time t get
mapped to network states at time t + 1. For instance, the first row of �, the
state [000], gets mapped to the state [100] with probability pin,1 pin,2, and to
state [000] with probability 1 − pin,1 pin,2, where pin,i is the spike density for
the ith binomial input. For simplicity, we assume pin,1 = pin,2, which will
be denoted as p. Continuing in this manner for all 16 network states yields
the following:

� =




1 − p2 0 0 0 p2 0 0 0

(1 − p)2 0 0 0 1 − (1 − p)2 0 0 0

0 1 − p2 0 0 0 p2 0 0

0 (1 − p)2 0 0 0 1 − (1 − p)2 0 0

0 0 1 − p2 0 0 0 p2 0

(1 − p)2 0 0 0 1 − (1 − p)2 0 0 0

0 0 0 1 − p2 0 0 0 p2

0 (1 − p)2 0 0 0 1 − (1 − p)2 0 0




.

(4.10)

See Figure 3b for the corresponding state diagram.
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From section 3.1, we obtain π , the steady-state vector of our Markov
chain transition matrix, �:

πT =




1 − 2 p + p2

1 + p4 + 4 p2 − 2 p

p2
(
2 p4 − 2 p3 − p2 + 1

)
1 + p4 + 4 p2 − 2 p

−
(

p2 − 1
)

p2

1 + p4 + 4 p2 − 2 p

− p4
(

p2 − 1
)

1 + p4 + 4 p2 − 2 p

p2

1 + p4 + 4 p2 − 2 p

−
(
2 p2 − 2 p − 1

)
p4

1 + p4 + 4 p2 − 2 p

p4

1 + p4 + 4 p2 − 2 p

p6

1 + p4 + 4 p2 − 2 p




, (4.11)

where the ith element of π is the steady-state probability for the corre-
sponding network state, the ith row of �. One notable result is that the
first component is identically zero, indicating that the probability of find-
ing the system in the fully quiet state (no neuron firing) is nil. This might
be a counterintuitive result since one might expect absence of firing in all
neurons to be a common state, in particular for very low input rates, that
is, for p → 0. Figure 3b shows why this intuition is wrong. The quiet state
(000) can be reached only from itself. Therefore, a single spike will propel
the system out of this state, and it will never return to it again. Therefore,
the probability of finding this state in the steady-state solution vanishes. In
the limit of vanishing firing rates, the steady-state solution is the sequence
of states 100 → 010 → 001 → 100 (loop at bottom of Figure 3b). In the limit
of low input, equation 3.2 yields probabilities of one-third each for these
three states and zero for all others, in agreement with this observation.

To obtain p(i), the firing rate of the ith neuron in our recurrent network,
we use equation 3.6. That is, we sum over all network states in �, with
the ith neuron output unity, times the corresponding probabilities for the
network states, given by π . Explicit solutions for the firing rates for the
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three neurons comprising our network are as follows:

p(1) =− p2
(−1 + p4 − 2 p3 − 2 p2

)
1 + p4 + 4 p2 − 2 p

(4.12)

p(2) = p2
(
1 + p2

)
1 + p4 + 4 p2 − 2 p

(4.13)

p(3) = p(2). (4.14)

Plots of equations 4.12 to 4.14 as a function of input rate, p, are shown
in Figures 3c to 3e. In agreement with the discussion of equation 4.11, the
case p → 0 discussed above yields mean firing rates of one-third for all
three neurons. We also note in Figure 3c that in the opposite extreme of
input firing rate (i.e., for p → 1), the networks cycles exclusively through
the sequence of states 100 → 110 → 111 → 101 → 100 (loop around the
center of the figure). Since neuron 1 fires in all four of these states, its firing
rate must be unity in this case; neurons 2 and 3 both fire in exactly two of
the states, and therefore their firing rates must be one-half. This result is
confirmed by direct evaluation of equations 4.12 to 4.14 for p → 1.

The cross-correlations for pairwise neurons in Figure 3a, obtained using
equation 3.8, p, contain too many terms to display here; they are shown,
plotted as a function of input rate, in Figures 3f to 3h.

Just as for the solutions for firing rates discussed earlier, naive intuition
can be deceiving. While the negative correlation between neurons 2 and
3 shown in Figure 3g may be expected since these neurons are connected
by a (one-way) inhibitory synapse, it may seem surprising that the correla-
tion between neurons 1 and 2 (see Figure 3f) and that between neurons 2
and 3 (see Figure 3h), which are coupled by excitatory connections, are also
negative for all input frequencies. The reason for the observed anticorrela-
tion is related to the discussion following equation 4.11. As was observed
there, in the case of vanishing input, the network will cycle through the
three states in which each of the neurons 1, 2, 3 are activated in order, one
at a time. Therefore, at a given time, exactly one of these neurons is ac-
tive, while the other two are consistently inactive; this results in negative
cross-correlations. As p increases, this relationship loses consistency, and
for p → 1, the system locks into another loop in which neuron 1 is always
active and neurons 2 and 3 are firing in two of the four states. Inspection
of Figure 3c shows that each of the pairs of neurons is not correlated in this
loop: if the state of one neuron is 1, it is equally likely that that of the other
neuron is 0 or 1).

4.3 Cortical Microcircuit (n = 4). Next we turn to the derivation of
exact solutions for a simple model inspired by the canonical structure of
cortical microcircuits (Callaway, 1998; Binzegger, Douglas, & Martin, 2004;



Exact Solutions for Recurrent Networks 2651

1
1

1

1

2

4

-1

+1

+1

+1

+1

+1

+1

3

II-III

IV

V

VI

+1

Feedforward Input

Feedback Input

0  0  0 0

1  0  0 0
0  1  1 0

1  1  1 0

0  1  0 0

1  1  0 0
1  1  1 1

1  0  1 1

0  0  0 1

0  0  1 0

1  0  0 1

0  1  1 1

0  0  1 1

1  0  1 0

1  1  0 1

0  1  0 1

(a) (b)

1

Figure 4: A cortical microcircuit. (a) Anatomy. A four-neuron recurrent network
receiving two excitatory rate-modulated feedforward and feedback inputs tar-
geting different cortical layers. Edge values are connection weights. Neurons 1
to 3 are excitatory, whereas 4 is inhibitory. All neurons have unitary threshold.
(b) State diagram. Inputs are two rate- and cross-correlation-modulated bino-
mial spike trains characterized by firing rate p and cross-correlation q. Network
states are 4-tuples, read from left to right; for example, 1000 denotes that neuron
1 produces an output of 1, whereas neurons 2 to 4 produce no output (i.e., each
has output 0). Edge values (not shown) are state transition probabilities given
in Table 2. Note that both the number of inputs and outputs for a given state
are a power of 2.

Douglas & Martin, 2004), which has recently been gaining popularity for use
in modeling studies (Grossberg & Howe, 2003; Raizada & Grossberg, 2003;
Destexhe & Sejnowski, 2003; Grossberg & Swaminathan, 2004; Haeusler &
Maass, 2006). Let us consider the four-neuron recurrent network shown in
Figure 4. The connectivity matrix is given by

C =




0 1 0 0

0 0 1 0

1 0 0 1

−1 0 0 0


 . (4.15)

The threshold matrix is given by

θ =




1

1

1

1


 . (4.16)
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Note that, as defined in section 2.1, a neuron fires if its input equals or
exceeds the threshold θ . An input of size 1 will thus fire the neurons with
the thresholds given in equation 4.16.

There are two independent, rate-modulated binary inputs for our
example. The first one consists of feedforward (FF) inputs and targets layer
IV (neuron 1). The second, referred to as feedback (FB) input, modulates the
superficial layers II/III (neuron 2) and the deep layer VI (neuron 3). The FF
input firing rate is denoted p f f , whereas the FB input firing rate is denoted
p f b . To ease notation, we define p f f = (1 − p f f ) and p f b = (1 − p f b).

The total number of states in the system is 64 (24 neuron states times 22

input states), and the complete transition matrix � therefore has a dimen-
sion of 64 × 64. Most of its elements vanish and rather than proceeding by
a straightforward enumeration of all 4096 states, we now describe a more
efficient way for finding the steady-state solution. Define the network states
as 4-tuples, read from left to right; for example, 1000 denotes that neuron
1 produces an output of 1, whereas neurons 2 to 4 produce no output (i.e.,
each has output 0). Consider now the neural state diagram in Figure 4b,
where the edge values are transition probabilities between the neural states.
Note that the number of neural states (disregarding input states) is only 16,
and the dimension of the transition matrix between neural states therefore
is 16 × 16.

These transition probabilities are obtained from equation 3.1 and depend
on the possible input configuration probabilities, that is, from considering
the different ways and associated probabilities that a given neural state is
transformed in one time step. For example, network state 0000 is trans-
formed to 1000 only if there is a spike in the feedforward input but not
in the feedback input. For instance, we find that the probability that 0000
is transformed to 1000 in one time step (0000 → 1000) is p f f p f b , and this
is the entry in Table 2 for the matrix element with index 0000 → 1000. By
repeating this process for each network state, the Markov state transition
matrix is obtained. Most entries of the 16 × 16 matrix vanish; all nonzero
entries are listed in Table 2. We thus find that the matrix of transitions be-
tween the system states is indeed quite sparse; only about 1% of its entries
are nonzero (41/4096).

We obtain the steady-state vector per section 3.2. If specific values for
p f f and p f b are chosen, a numerical solution of the linear system of equa-
tions, equation 3.5, with a 17 × 16 matrix is easily computed. Our interest
here, however, is in the analytical solution of the system. It is obtained in
straightforward though tedious computations for which symbolic equation
solvers (like Maple 10; Waterloo Maple) are well suited. The solution con-
tains hundreds of terms and is too verbose to show here. Firing rates and
cross-correlations are computed from the solution by using equations 3.6
and 3.8, respectively. Again, each of the analytical expressions for the firing
rates and cross-correlations contains hundreds of terms. They are not listed
here explicitly; instead, they are shown in graphical form in Figures 5 and 6.
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Table 2: State Transition Table for the Recurrent Network Shown in Figure 4.

State Transition Probability

0000 → 0000 p f f p f b
0000 → 0110 p f f p f b
0000 → 1000 p f f p f b
0000 → 1110 p f f p f b
0001 → 0000 p f b
0001 → 0110 p f b
0010 → 1001 p f b
0010 → 1111 p f b
0011 → 0001 p f f p f b
0011 → 0111 p f f p f b
0011 → 1001 p f f p f b
0011 → 1111 p f f p f b
0100 → 0010 p f f p f b
0100 → 0110 p f f p f b
0100 → 1010 p f f p f b
0100 → 1110 p f f p f b
0101 → 0010 p f b
0101 → 0110 p f b
0110 → 1011 p f b
0110 → 1111 p f b
0111 → 0011 p f f p f b
0111 → 0111 p f f p f b
0111 → 1011 p f f p f b
0111 → 1111 p f f p f b
1000 → 0100 p f f p f b
1000 → 0110 p f f p f b
1000 → 1100 p f f p f b
1000 → 1110 p f f p f b
1001 → 0100 p f b
1001 → 0110 p f b
1010 → 1101 p f b
1010 → 1111 p f b
1011 → 0101 p f f p f b
1011 → 0111 p f f p f b
1011 → 1101 p f f p f b
1011 → 1111 p f f p f b
1100 → 0110 p f f
1100 → 1110 p f f
1101 → 0110 1
1110 → 1111 1
1111 → 0111 p f f
1111 → 1111 p f f

Of note are the “spikes” in the cross-correlations, Figure 6, as both input
probabilities approach unity. It is probable that these instabilities arise from
vanishing denominators in equation 3.8; note that the mean rates p() of all
four neurons go toward unity in the limit p f f , p f b → 1 (see Figure 5). The
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Figure 5: Firing rates plotted as a function of feedforward input firing rate,
p f f , and feedback input firing rate, p f b , for the four-neuron recurrent network
shown in Figure 4. (a) p(1), (b) p(2), (c) p(3), and (d) p(4). These plots are based
on the exact solutions.

resulting simultaneously vanishing denominators and numerators in equa-
tion 3.8 clearly pose difficulties for the numerical evaluation routines whose
results are shown in Figure 6. Comparison with simulations confirms the
validity of the analytical solutions in general and, in particular, that these
“spikes” in the cross-correlation solutions are likely artifacts of the equation
solver (see section 5).

5 Numerical Simulations

Simulations of the three networks discussed in section 4 were run in Matlab.
The initial states of each network were chosen randomly, and each network
was then iterated through 5000 iterations of its basic dynamics. The first
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Figure 6: Cross-correlations plotted as a function of feedforward input firing
rate, p f f , and feedback input firing rate, p f b , for the four-neuron recurrent net-
work shown in Figure 4. (a) q (1,2), (b) q (2,3), (c) q (3,4), (d) q (4,1), (e) q (1,3), and
(f) q (3,4). These plots are based on the exact solutions. Note the instabilities in-
volved with evaluating the exact solutions for some large values of p f f and p f b .
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2000 iterations were discarded to remove effects due to transient network
activity, and the resulting steady states are characterized in this section.

All simulations were run for finite input probabilities (as discussed,
formally obtained results for vanishing p and p f f , p f b may depend on the
initial state and are not valid). Although small variations (jagged curves)
are noted due to the finite lengths of the simulation runs, particularly for
the correlation functions for which the total number of contributing events
is lower than that for the mean firing rates, overall the agreement with the
analytical solutions is excellent.

The simulation results for the firing rates confirm the exact solutions
from section 4.2, shown in Figures 2c and 2d.

Simulation results for the firing rates and cross-correlations also con-
firmed the validity of the the exact solutions in Figures 3c to 3h. As dis-
cussed, the finite length of the simulation runs leads to small variations
around the exact solutions, and this effect is more pronounced for cor-
relations than for the mean firing rates because the average is over larger
numbers of events (spikes) in the latter case than in the former (coincidences
of spikes).

Our analytical results for the firing rates and cross-correlations of the cor-
tical microcircuit from section 4.3, shown in Figures 5 and 6, were also cor-
roborated by the numerical work. Again, the same “jaggedness” noted pre-
viously is observed for the cross-correlations. On the other hand, the numer-
ical instabilities in the analytical solution close to the point p f b = p f f = 1
(“spikes” in Figure 6), which are due to the simultaneously vanishing nu-
merators and denominators of the analytical solutions, are not observed
in the simulations; this confirms that they are due to instabilities of the
symbolic equation solver used and not properties of the system.

6 Discussion

This letter extends our previous analytical results (Mikula & Niebur, 2003a,
2003b, 2004, 2005) for an individual coincidence detector and a feedforward
network of coincidence detectors to a recurrent network of coincidence
detectors. The limitations of using coincidence detectors as model neurons,
mainly targeting biological plausibility, have been discussed previously
(Mikula & Niebur, 2003a). We note that our derivation is valid only for
steady-state neuronal responses and does not inform us about transient
responses, which are likely to be of importance in many cases.

The extension of our analytical methods to arbitrary networks of coinci-
dence detectors reveals two additional limitations: combinatorial explosion
and algebraic intractability. The combinatorial explosion limits the size of
the networks that may be analytically solved since the computations scale
as 2n for n neurons. In practice, this limits our solutions to moderately sized
networks of neurons, which is still useful for analyzing systems like the
canonical microcircuit discussed here. In addition to the networks described
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in section 4, we have solved systems with up to n = 6 neurons (results not
shown).

The second limitation, analytical intractability, is a problem arising from
symbolical evaluation of expressions containing hundreds or thousands of
terms. Related to this problem, but not to the validity of the analytical so-
lutions themselves, are issues related to the numerical evaluation for the
purpose of plotting these analytical solutions. Where this is most evident
in the results presented here is in Figure 6, where numerical instabilities
appear during the evaluation of the exact solutions for some large values
of p f f and p f b . As discusssed, these are most likely caused by simultane-
ously vanishing denominators and numerators in equation 3.8; note that the
mean rates p() of all four neurons go toward unity in the limit p f f , p f b → 1
(see Figure 5). Simultaneously vanishing denominators and numerators
in equation 3.8 clearly pose difficulties for the numerical evaluation rou-
tines whose results are shown in Figure 6. Comparison with the network
simulation (not shown) confirms that these instabilities are artifacts of the
numerical evaluation.

Simple examples yielding insight into the system’s behavior are the
cases when all inputs to the canonical microcircuit have either very high
frequency or very low frequency. Figure 5 shows that in the former case
(p f f , p f b → 1), the firing rates of all four neurons approach unity, as one
might have expected. In the opposite case (p f f , p f b → 0), the same figure
shows that all four neurons again approach a common firing rate, which is
now one-third. This arises because for low input probabilities, the steady
state of the system is the cycle 0100 → 0010 → 1001 → 0100 (in the upper
center part of Figure 4b). From inspection (or from formal evaluation of
equation 3.6), it is clear that the mean firing rates of all three neurons are
one-third while in this cycle. While this numerical result could have been
obtained from simulation of the system, the systematic evaluation of the
analytical solution provides a much more principled approach.

It is interesting to compare the derivation of recurrent network solutions
with the derivation of feedforward network solutions (Mikula & Niebur,
2005). We note that the role of the Markov chain transition matrix in the
recurrent network solution is analogous to the role of the truth table in the
feedforward network solution and that the computational complexity for
recurrent network solutions scales as 2n, where n is the number of neurons
in the network, whereas for feedforward network solutions, the computa-
tional complexity scales as 2m, where m is the number of inputs. While it
might appear from these numbers that the complexity of recurrent networks
may be smaller than that of feedforward nets (for m > n), this is not the case.
The discrepancy is resolved by incorporating the multiplicative complex-
ity of the inputs into the recurrent network solutions: while the number
of neural states of the recurrent network is 2n and the Markov transition
matrix therefore has 2n × 2n elements, each of these elements may con-
sist of 2m terms—one for each input configuration. This yields a modified
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computational complexity of 2n+m, thereby making the feedforward net-
work solutions considerably more efficient than the recurrent network so-
lutions and underscoring the fact that recurrent networks are exponentially
more complicated than feedforward networks.

What is the relationship of our model, involving coincidence detectors
with weighted connections and receiving probabilistic inputs of varying
rates and cross-correlations, to finite automata (also known as finite state
machines)? If our model has no probabilistic inputs, then it reduces to a finite
automaton consisting of coincidence detectors, which have long been rec-
ognized as useful for pattern recognition (Keller, 1961). The incorporation
of differentially rate modulated inputs increases the dynamic complexity
of the system and at the same time increases the relevance of the model
for neuroscience studies where the circuits of interest are open systems that
receive known inputs that are characterized in terms of their rates. Thus,
we believe our model formulation, while simplistic, nonetheless bears rel-
evance for theoretical and computational studies of small to modest-sized
neuronal circuits, where exact solutions are desirable.

In our analysis, we focused on firing rates and cross-correlations, leaving
aside the issue of higher-order correlations. These may well be of impor-
tance, but they are more difficult to analyze, visualize, and interpret, and
there are also many fewer data available to compare theoretical predictions
to experimental results (but see Gerstein & Clark, 1964; Abeles & Goldstein,
1977; Abeles & Gerstein, 1988; Abeles, 1991; Martignon, Von Hasseln, Grün,
Aertsen, & Palm, 1995; Riehle, Grün, Diesmann, & Aertsen, 1997, for experi-
mental studies of higher order correlations). Additional analysis techniques
may be useful for understanding higher-order correlations, for instance,
snowflake plots (Czanner, Grün, & Iyengar, 2005), and may be an interest-
ing direction for further development of the methods described in this letter.

What do our results say about the relationship between firing rates and
cross-correlations? As is evident in Figures 5 and 6, the relationship is in-
variably nonlinear and potentially counter-intuitive. For example, Figure 5d
shows that the firing rate of neuron 4 increases as the rate of the feedback
input is increased, yet from Figure 6d, the cross-correlation between neu-
rons 4 and 1, q(4,1), decreases as the rate of the feedback input is increased.
Either of these results is consistent with our understanding of the network
dynamics: increasing feedback input leads to increased firing rates to neu-
ron 3 and subsequently, via an excitatory synapse, to increased firing of
neuron 4. At the same time, the inhibitory synapse from neuron 4 to neu-
ron 1 may lead to low correlation between these two neurons, and it does,
in this situation. Together, these observations demonstrate that increasing
firing rates do not necessarily translate into increasing cross-correlations,
though our results do support the contention that firing rates and cross-
correlations are likely to be coupled. The derivation of analytical solutions
underscores the complexity of the relationship between firing rates and
cross-correlations.
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An example of mixed codes involving firing rates and cross-correlations
in complex nervous systems might be the representation of selective at-
tention in the primate cortex (Niebur & Koch, 1994). Selective attention
has been shown in electrophysiological studies to be correlated both with
rate changes as well as with changes in the fine temporal structure (on the
order of milliseconds or tens of milliseconds) of neural activity (Moran &
Desimone, 1985; Steinmetz et al., 2000; Fries, Reynolds, Rorie, & Desimone,
2001; Niebur, 2002; Saalmann, Pigarev, & Vidyasagar, 2007). It will take
more experimental as well as theoretical work to come to a conclusive an-
swer which of the proposed neural coding schemes are used by the different
nervous systems.
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