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estimate of the Wiener window. However, the typical form of such 
data means that good empirical parametric models are invariably 
available, so that accurate estimates of the Wiener window can be 
made. Of course, one might expect that if the models are suffi- 
ciently accurate then the deconvolution can be performed on the 
models themselves, thereby bypassing any consideration of the 
Wiener filter. In this communication it was shown that such a cross- 
over point in model accuracy does exist, one side of which the best 
results are obtained with the standard Wiener filter (W3)  and the 
other side of which it is better to perform a straightforward decon- 
volution of the models themselves using, for example, the method 
of serial division [9]. 

So far, it has not been demonstrated, either theoretically or by 
example, that W, can ever perform better than both W, and W3. 
Indeed, experience seems to indicate that, while W, may certainly 
perform better than W , ,  under those conditions when it does then 
W3 seems to perform better than either. The choice of Wiener win- 
dow is thus reduced to that of W ,  (which is tantamount to using the 
model y( t )  itself with no window at all) or W3 (the usual form). 
Although it appears difficult to make specific statements about when 
to use either, the results of this study indicate that the availability 
of a good parameteric model for y ( t )  (such as the biexponential 
model of the above example) would allow the use of W ,  . The def- 
inition of a good model here means one whose residuals (the dif- 
ferences between the model and the signal being modeled) are 
noiselike in character. A poorer model, whose residuals would ex- 
hibit systematic deviations about zero (indicating insufficient de- 
grees of freedom or inappropriate structure, such as the parametric 
but highly inappropriate polynomial model in Fig. 3) would require 
the use of W,. 

In conclusion, then, i t  is possible to suggest the following pro- 
cedure for deciding on how to use the Wiener filter in the decon- 
volution of tracer-type data. First, fit an appropriate parametric 
model to the data to be deconvolved. Next, examine the residuals 
between the data and the fitted model. If they are essentially noise- 
like in character then one should deconvolve the model itself. If 
the residuals have clear deterministic features (i.e., systematic de- 
viations about zero) then one should use the model to implement 
the standard Wiener filter (W3) .  Finally, although this study has 
focused on the deconvolution of biological data, its results apply 
equally well to any data whose deterministic part is smooth and 
well representable by a parametric model. 

ACKNOWLEDGMENT 

The helpful comments of Dr. R. Keamey and Dr. I. Hunter are 
gratefully acknowledged. 

REFERENCES 

[I]  D. M. Foster, D. G. Covell and M. Berman, “Applications of a gen- 
eral method for deconvolution using compartmental analysis,” Com- 
pur. B i d .  Med., vol. 18, pp. 253-266, 1988. 

[2] J. Gamel, W. F. Rousseau, C. R. Katholi, and E. Mesel, “Pitfalls 
in digital computation of the impulse response of vascular beds from 
indicator-dilution curves,” Circ. Res., vol. XXXII, pp. 516-523, 
1973. 

[3] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary 
Time Series. 

[4] R. N. Bracewell, “Restoration in the presence of errors,” Proc. IRE, 
vol. 46, pp. 106-111, 1958. 

[5] J .  W. Brault and 0. R. White, “The analysis and restoration of as- 
tronomical data via the fast Fourier transform,” Asrron. Astrophys., 
vol. 13, pp. 169-189, 1971. 

New York: Wiley, 1949. 

W. H. Press, B. P. Flannery, S. A .  Teukolsky, and W. T. Vetterlin, 
Numerical Recipes. London: Cambridge Univ. Press, 1986, pp. 

D. J .  Cutler, “Numerical deconvolution by least squares: Use of pre- 
scribed input functions,” J .  Pharm. Biopharm., vol. 6, pp. 227-241, 
1978. 
- , “Numerical deconvolution by least squares: Use of polynomials 
to represent the input function,” J .  Pharm. Biopharm., vol. 6, pp. 

R. N .  Bracewell, The Fourier Transform and its Applications, 2nd 
ed. New York: McGraw-Hill, 1978. 
P. V. Pedersen, “Novel deconvolution method for linear pharmaco- 
kinetic systems with polyexponential impulse response,” J .  Pharm. 
Sci., vol. 69, pp. 312-318, 1980. 

4 17-4 19. 

243-263, 1978. 

Numerical Implementation of Sealed-End Boundary 
Conditions in Cable Theory 

Emst Niebur and Dagmar Niebur 

Abstract-We show that a frequently used numerical implementation 
of von Neumann boundary conditions (zero inflowing current) in cable 
theory is incorrect. Correct implementations are given and it is shown 
that they yield results in good agreement with known analytical solu- 
tions. 

INTRODUCTION 

Cable theory is the standard tool for modeling voltage distribu- 
tions in spatially extended neurons or other excitable cells, like 
cells found in cardiac tissue. The theory is based on the observation 
that the intracellular electrical potential vanes much more along a 
long nerve fiber than between points inside the fiber in a plane 
perpendicular to the fiber axis. This facilitates greatly the mathe- 
matical analysis since the spatial dimension of the differential equa- 
tions for the intracellular voltage is reduced from three to one. The 
advent of digital computers made the numerical solution of these 
equations possible in cases in which no analytical solutions have 
been found. 

Any method of solution, analytical or numerical, must take into 
account the initial conditions and the boundary conditions which 
make the solution of the differential equations unique. We found 
several articles in the literature [ l ] ,  [ 2 ] ,  [5], [6], [9], [ l l ] ,  [13], 
[16] in which the boundary conditions were incorrectly imple- 
mented, which led to a wrong solution. This communication deals 
with the correct implementation of the boundary conditions. 
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CABLE THEORY A N D  BOUNDARY CONDITIONS Using the first-order approximation for the time-derivative and 
central differences for the spatial derivatives, ( 2 )  is written in dis- 
‘retized form as 

(6)  

L~~ v ( ~ ,  t) be the intracellular voltage in the nerve fiber 
study, t the time, and x the space coordinate along the axis of the 

following partial differential equation [ 171 
fiber. The basic assumption of cable theory is that V obeys the av::,‘ + pv:“ + CYv:+’; = y,, 

h2 A2 
a = - p 7 ,  P = I + 2 p 7 + p ,  

d a2v(x, t) aw, t) A x  At A x  ( 1 )  

where d is the diameter of the fiber, R, the volume resistivity of the 

-___- 4R, ax> c M T  =jM(x,  ?) 
X2 

y = ( l  - p )  2 ‘:-I + l a i t  - + ( p  - 
cytoplasm, CM the transmembrane capacity per membrane area, and 
j , ( x ,  t) the transmembrane current per membrane area. If the cell 
membrane is passive and linear, j M  is found to be 

x2 
f (1  - p)  2 V:+ I + ER, 

where g R  is the transmembrane resting conductivity per membrane 
area, and ER the resting potential.’ All arguments in this commu- 
nication are, however, valid when j ,  depends explicitly on x and 
r ,  or when it contains nonlinear terms in V; e.g. ,  in the Hodgkin- 
Huxley model. We will assume that d ,  C M ,  R,, gR, and ER do not 
depend on x or t .  

Equation (1 )  can then be written as 

where h and T are defined by 

for all i E { 1 ,  2 ,  * . , N - 1 ) .  The boundary terms, i = 0 and i 
= N ,  will be treated separately. 

In this equation, p is a parameter which is chosen between 0 and 
1 .  For p = 0, Euler’s algorithm is obtained. In this case, (6) is an 
explicit expression for V:’ ’ as a function of V:- I, Vy, and V:+ ,. 
For p = I ,  the algorithm is called “totally implicit”; for p = 1 / 2 ,  
it is called the “Crank-Nicholson algorithm” [4] .  The Crank- 
Nicholson algorithm is second-order accurate in time [ l o ] ,  while 
Euler’s algorithm and the totally implicit algorithm are first order. 

The initial conditions, given by ( 3 ) ,  are taken into consideration 
by setting = Vo(i . A x )  for i E (0, 1, . . . , N } .  Let us now 
consider the boundary condition ( 5 ) ,  i .e.,  the terms with i = 0 and 
i = N in (6). We found that in [ l ] ,  [ 2 ] ,  [ 5 ] ,  [61, 191, [ I l l ,  [131, 
[16],  the sealed-end BC, given by ( 5 )  were implemented by setting 

(7)  V1, = V;; V$+ I = V$ for all n.  

In order to obtain a unique solution of (2), initial conditions and 
boundary conditions (BC) have to be provided. If the length of the 
nerve fiber under study is L ,  we want to solve (2) in the spatial 
interval [0, L] and f o r t  > 0. The initial conditions are determined 
by the choice of V ( x ,  t = 0) for all x E [0, L ] :  

This yields 

(a  + p)v;+’ + aV;+I 

h2 

(8) V(x, 0) = V&), x E [O, Ll > (3) 

where Vo(x) is a given function of x. CYV;’: + (a + p) V$+ I 
The longitudinal current along the fiber is given by [ 171 

x2 
av(x,  t) = ( 1  - VZ-1 

t(X, t )  = -- - (4) 4 ~ ,  ax . 
Often it is a good approximation to assume that no current is leak- (9 )  
ing out of the distal ends of the nerve or cardiac fiber. One then 
speaks Of  “sealed-end boundary conditions.” From (4 ) ,  it is clear 
that the BC corresponding to vanishing leakage currents at both 
ends are 

It will be shown below that (7 )  does not implement (5). We will 
also give formulas which must be used instead of (7 ) .  

In mathematics, this is called a von Neumann boundary condition. 

NUMERICAL SOLUTION BY FINITE DIFFERENCE METHODS 

The numerical solution of ( 2 )  can be obtained by finite difference 
methods. The time is divided in steps of A t ,  and the spatial interval 
[0, L]  is divided into segments by N + 1 equidistant points. We 
define A x  = L / N ,  and 

V: = V(i * A x ,  n . A t ) ,  

i E  { 0 , 1 , 2 ,  * * .  , N } ,  n = 0, l , 2 , .  

‘Units are as follows: d is in [m], R, in [Om], C, in [Fm-*], j ,  in [Am-2], 
g, in [O-’ m-’], and Vand ER are in  [ V I .  It follows that the units of X and 
7, which will be defined after (2), are [m] and [SI, respectively. 

COMPARISON OF THE NUMERICAL SOLUTION WITH THE EXACT 
SOLUTION 

Equation (2 )  can be solved analytically. Using a separation An- 
satz, V(x,  t )  = X(x)  . T(t), and the method of variation of con- 
stants, the general solution for the sealed-end boundary conditions, 
( S ) ,  is found to be, 

V(x, t )  = ER + e-‘’’ 5 A, exp [ -(y) r j i  i] cos (zx). (10) 
,= I 

In this equation, the coefficients AI are the Fourier coefficients of 
the initial condition. They are determined by 

It is instructive to consider the case when only one of these coef- 
ficients is nonzero. In Fig. 1 ,  we have plotted the exact solution 
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Fig. 1. Comparison of the exact and the numerical solutions of (2) repre- 
senting the voltage distribution in a neural or cardiac fiber. Shown are dif- 
ferent solutions V ( x ,  t = 0.01 7) of (2) versus x / L .  Here, the length L of 
the fiber is L = A, and the resting potential is ER = -70 mV. The boundary 
conditions given in (7) and the initial condition given in (12) were used. 
The full line shows the exact solution, given by ( IO)  and (11) .  The dotted 
line shows a numerical solution obtained using Euler’s algorithm, (b) for 
p = 0. The dashed line shows another numerical solution, obtained using 
the Crank-Nicholson algorithm, ( 6 )  for p = 1/2. For both numerical so- 
lutions, N = 50, A x  = 0.02 L ,  A f  = 0.67 . 7 .  The numerical solu- 
tions differ from the exact solution at both boundaries. 

and two numerical solutions (Euler and Crank-Nicholson) for the 
initial condition 

i.e.,  A5 = 100 mV and all other A, are zero. The BC given by ( 7 )  
were used for both numerical solutions. At the boundaries, both 
numerical solutions differ considerably from the exact solution. 

The reason for this deviation can be understood by analyzing the 
physical meaning of the different terms in ( 2 ) .  Let us treat this 
equation in discretized form, ( 6 ) ,  and let us consider the boundary 
at x = L. The current flowing into this point from the region x < 
L is proportional ( V % - ,  - V k ) / A x ,  which, by (10)-(12), is easily 
seen to be negative for all n.  On the other hand, if (7) is used as 
boundary condition, the current flowing towards x > L is identi- 
cally zero. The sum of incoming and outgoing currents is thus ap- 
proximated by a negative value for all time steps. This yields the 
same solution of the differential equation as a boundary condition 
for which a current leaks out of the end of the nerve fiber at all 
times. The value of this “phantom” current, Z F . N  is easily calcu- 
lated as 

rd2  V$ - V%-l 
= - 

8R, A x  

This explains the negative deviation of the numerical solution in 
Fig. 1 from the exact value at x = L.  The current ZFLN depends on 
the voltage at the boundary and it vanishes for t .+ 03 for the so- 
lution given in ( IO) .  

An analogous argument holds for the boundary x = 0, where use 
of the BC (7) gives rise to a “phantom” current Z F t I  which con- 
stantly flows into the neural process. This leads to a numerical so- 
lution for V which lies above the exact solution (see Fig. l) .  

CORRECT NUMERICAL SOLUTION 

A correct implementation of the sealed-end BC is obtained by 
expanding V(x, t )  in a Taylor series around the endpoints of the 
process under study. At x = L ,  

Replacing a2V(x = L ,  t ) / a x 2  by (V”NI + V k - l  - 2Vk)) /Ax2 and 
using aV(x = L. t ) / a x  = 0 for all t ,  we obtain V;+l = + 
O(Ax3) .  The same analysis is applied at x = 0 and we obtain, 
correct to second order in A x ,  

(14) 

It is a well-known result of numerical analysis that these BC are 
preferable to ( 7 )  because they are second order in A x  and not first 
order, as is (7). Use of first-order BC will eventually lead to a 
solution which is only first order accurate on the whole interval. 
Indeed, (14) has been used as an implementation of sealed-end BC 
previously (see, e .g . ,  [12],  [18]). However, to the best of our 
knowledge, it has not been noted that use of the incorrect BC not 
only leads to an inaccurate solution, but that it introduces system- 
atic errors (“phantom currents”). The central point of this paper 
is that the phantom current [see (14)] is of first order in A x ,  not of 
second! 

A result which is correct in first and second order is obtained by 
using (14) as BC. The equations which replace (8) and (9) are 

V Y l  = V ;  and V‘’+I = V ; - l  for all n.  

pv;” + 2av;+’  

x2 + 2(1 - p )  7 Ax  V;  + ER, 

7 
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Fig. 2 .  Same as in Fig. 1 ,  but the improved implementation of the bound- 
ary conditions, (15), (16) instead of (8), (9), was used for the numerical 
solutions. The results of the numerical calculations agree with the exact 
solution within the numerical error bounds. 

These BC have been used for the calculation of the numerical so- 
lutions shown in Fig. 2 .  They coincide with the exact solution 
within the numerical error bounds. 

An alternative implementation of sealed-end BC has been de- 
scribed by Ganapathy, Clark, and Wilson [7], [8]. Instead of using 
central differences for the second derivative everywhere (which ne- 
cessitates the introduction of a “fictitious” point at each bound- 
ary), these authors use central differences inside the integration re- 
gion and forward and backward differences at the left and right 
boundaries, respectively. While both methods are of second-order, 
an obvious advantage of the forward/backward difference method 
is that it uses the information from two points inside the interval 
(e.g., V, and VI), while the central difference method described 
above only uses one point (e.g., V I ) .  On the other hand, the central 
difference condition V - ,  = VI reflects immediately a property of 
the exact solution, namely being an even function with respect to 
the boundary. Which method is preferable depends probably on the 
details of the problem to be solved. 

RESULTS FOR t 3 7 

Another example which shows the influence of the BC is shown 
in Fig. 3. It is based on one of the classical papers of the applica- 
tion of cable theory to nerve fibers (161 by Rall. This author sim- 
ulated the excitation of a neuron by excitatory synapses by sub- 
tracting a term & ( x ) / g R  . ( V ( x ,  t )  - E,) from the right-hand-side 
of ( 2 ) .  (Here, E refers to “excitatory.”) In this equation, E, > ER, 

and g,(x) is positive for those values of x ,  at which active synapses 
are present, and zero otherwise. Inhibitory synapses are simulated 
by subtracting a term with E, < ER or E, = E R .  This is a powerful 
model which recently has been generalized for simulating networks 
of interacting neurons [14], 1151. 
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Sealed-end BC were used for the numerical calculations in [16]. 
Although the author did not state explicitly how he implemented 
these BC, he almost certainly used (7). We conclude this from the 
fact that we were able to reproduce his results perfectly well when 
we used this equation (compare Fig. 3, dotted lines, with Fig. 6 in 
1161). On the other hand, if (14) is used, the result is different (full 
lines in Fig. 3). We emphasize this difference, since in our pre- 
vious example (Figs. 1 and 2 ) ,  we calculate the time evolution of 
V(x, t )  only over a time interval of 0.01 7, and we noted that the 
“phantom” current vanishes for t --t W .  One might argue that the 
difference between the results using the correct BC, (14), and the 
incorrect BC, (7),  is only a transient effect, which disappears rap- 
idly. The calculation whose results are shown in Fig. 3 proves that 
this is not the case, and that the results depend on the implemen- 
tation of the BC even at a time of the order of magnitude of r .  

EXCITATION BY INJECTION OF CURRENT 

Among the papers in which the sealed-end BC are implemented 
by expressions equivalent to (7) is [ l  I ]  by Maglaveras et al.; see 
the discussion following their (6). For other calculations, however, 
these authors used a boundary condition which is equivalent to our 
(14); see their (4). Their interpretation of this equation was, how- 
ever, entirely different from ours: Maglaveras et al. were interested 
in constructing BC which make the cardiac fibers they simulate 
behave as if they were longer than the part which is actually sim- 
ulated. This can be desirable to save computer time. Because the 
BC given in (14) are symmetric with respect to the boundaries (since 
VYl = V;,  and V&+ I = V;- they called these “symmetric prop- 
agation BC” and concluded that use of (14) yields a simulation of 
a cardiac fiber of twice the length than that of the fiber simulated 
explicitly and thus helps “to avoid artifacts due to impedance mis- 
match.” Maglaveras et al. studied the excitation of a cardiac fiber 
by a current which is injected at the end of the fiber. Their calcu- 
lation yielded the result that a greater current has to be injected at 
an end with the BC given in (14), than at an end with the BC given 
in (7), if the same effect (in terms of strength-duration character- 
istics) is to be obtained. Maglaveras et al. concluded that this result 
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Fig. 3 .  (a)-(d) Simulation of a neural fiber which is postsynaptic to excitatory synapses. The fiber length L = 2 X  has been 
divided in ten segments ( N  = IO) for the numerical calculations. As in [16], the quantity ( V  - E , ) / ( E ,  - E,) is plotted versus 
time. Here, ER = -70 mV, E, = 0 mV, and Vis the intracellular voltage in the first segment, which, in [16], was assumed to 
represent the soma. The synaptic excitation is assumed to take place for 0 < t < 0.25 T .  The synaptic transmembrane conduc- 
tivity in (19), g,, is zero everywhere except in the following segments: segments 2 and 3 for 3(a), 4 and 5 for (b), 6 and 7 for 
(c), and 8 and 9 for (d). The synaptic interaction is assumed to be limited to these segments where it is simulated by setting g, 
= g, for 0 < t < 0.25 r. Euler’s algorithm was used in all cases and the initial conditions were always V&) = E ,  for all x .  
The data shown by the dotted lines, which agree with those presented in Fig. 6(a)-(d) of [16], were calculated using the boundary 
conditions given in (7). The full lines show the result of the same calculation, but using the improved boundary conditions, 
(14). In all cases, it is clear that the results depend on the type of boundary conditions used. 

corroborated their interpretation that the apparent length of the fi- 
ber is doubled. 

We do not agree with this conclusion. A greater injected current 
is needed to achieve the same effect at an end with correctly im- 
plemented sealed-end BC than at an end with the BC given by (7), 
since in the latter case, the effect of the injected current is amplified 
by the above mentioned “phantom” current. Results obtained with 
this BC have thus to be considered as incorrect. The solutions Mag- 
laveras et al. obtained with their “symmetric propagation BC” are 
valid for a sealed end. We show in the following that they can be 
reinterpreted for a process of double length, but that this does not 
lead to new results. 

Let us consider a nerve fiber which has all parameters identical 
to the one studied above, but which extends from x = -L to L ,  
while the original fiber extended from 0 to L. If a current I is in- 
jected at x = 0, currents of equal magnitude 1 I I / 2  flow to the right 
(x > 0) and to the left (x < 0). As a consequence, a V / a x  is non- 
zero for x # 0, taking the values a V ( - x ,  ? ) / a x  = -aV(x ,  t ) / a x  
= 4 R j I / ( d 2 )  [see (4)]. It follows that V has an extremum at x = 

0 (a maximum or a minimum, depending on the sign of the injected 
current), thus aV(x = 0, ? ) / a x  = 0 for all t .  Because the same 
condition is met at a sealed end, injection of a current I in a cable 
of infinite length leads to the same solution V(x, t )  as injection of 
a current I / 2  close to the sealed end of a half-infinite cable.’ For 
x < 0, it follows from the symmetry of the problem that V ( x ,  t )  = 
V ( - x ,  t) .  Thus, the “symmetric propagation BC” yield exactly 
the same result as the sealed-end BC, if one takes into account that 
twice the current has to be injected at the midpoint of a doubled 
fiber than at the endpoint of the original fiber. Incidentally, (14) 
was already used by Cooley and Dodge [3] for the simulation of a 
nerve fiber which is excited by current injection at its midpoint. 
These authors, however, noted correctly that a pair of mirror-sym- 
metric impulses arises at the stimulating electrode and propagate 
away in both directions. 

*The current cannot be injected at x = 0 because of the sealed-end BC, 
but we can assume it to be injected between 0 and A x .  

I 
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A Bivariate Version of Andrews Plots 

James A. Koziol and Werner Hacke 

Abstract-A bivariate version of Andrews plots is introduced for nat- 
urally paired multivariate data. The bivariate Andrews plots are space 
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curves, and are particularly effective for revealing patterns and clus- 
ters when depicted dynamically. Projections of the bivariate Andrews 
plots recover the familiar univariate Andrews plots. 

I. INTRODUCTION 

Andrews [l]  described a graphical method of obtaining a visual 
representation of multivariate data. The method consists of repre- 
senting a p-dimensional vector x T  = (xl, x2, . . . , x,,) (where T 
denotes the transpose of the p x 1 column vector x) by the finite 
Fourier series fx(t) = xI / h  + x2 sin ( t )  + x3 cos ( t )  + x4 sin ( 2 t )  
+ x5 cos ( 2 t )  + . . * and plottingf,(t) for a set of t-values in the 
range - -a  5 t 5 n (or, alternatively, replacing t by 2nt  and using 
the range 0 s t 5 1) .  A set of p-dimensional observations will 
appear as a set of lines drawn on a plot, which is of use in explor- 
atory data analysis. Andrews established a number of theoretical 
properties of such plots, and demonstrated their value in discerning 
patterns, clusters, and outliers in multivariate data sets. 

For those not familiar with Andrews plots, this short example 
might be useful. Let the distribution of x T  = (xl,  x,) be bivariate 
normal, with mean vector pLI and covariance matrix E, given by 

respectively. Let y r  = ( y l ,  y 2 )  = (xl SGN ( x I x 2 ) ,  x2) where SGN 
( t )  = + 1  if t > 0, - 1  if t < 0. Then y I  and y 2  still have unit 
normal marginal distributions, but they no longer are jointly bivari- 
ate normally distributed (since y I  and y 2  are both positive or both 
negative, each with probability 0.5). The mean and covariance of 
y are given by 

respectively. A random sample of size 50 was drawn from the dis- 
tribution of y ,  and the Andrews plots for these 50 vectors were 
drawn separately for y , ,  yz positive and y l ,  y2  negative in Fig. l(a) 
and (b), respectively. The patterns within each figure are consis- 
tent, and clearly distinguish the two figures. 

The purpose of this note is to describe a bivariate version of 
Andrews plots. Given two vectors of observations x T  = (xl, x2, 
. . . , x p )  and y T  = ( y , ,  y 2 ,  . . . , y,,) where the (x,, y , ) ,  i = 1 ,  2 ,  
. . .  , p are naturally paired, form the functions 

f*(t) = XI/& + x2 sin (t)  + x3 cos ( t )  + x4 sin (2 t )  

+ x5 cos (2 t )  + . . . 
h(t) = y l / h  + y2  sin (1) + y3  cos ( t )  + y4 sin (2t) 

+ y5 cos (2t) + . . . 
and plot ( t , f , ( t ) ,  f , ( t ) )  for a set of r-values in the range - n  5 t 5 

Note that the two-dimensional projections of the space curve 
n .  

recover the familiar Andrews plots. Many of the properties of An- 
drews plots can thus be immediately extended to the corresponding 
space curves. In addition, two other properties should be men- 
tioned: 

1) The volume swept out by rotating the space curve ( t ,  fx ( t ) ,  
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